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Abstract

Component-based software engineering offers the op-
portunity to assemble entire systems from components.
When applied to Distributed Real-Time and Embedded
(DRE) systems, which components to assemble and how to
assemble them are determined not only from functional cor-
rectness criteria but also assurance of the system’s quality
of service (QoS). This paper presents a grammatical QoS-
driven approach to optimize component assembly by reduc-
ing the search space of assembly alternatives by eliminating
infeasible components, with feasible components selected
based on reasoning about non-functional requirements. The
reasoning is realized by a rule engine with a knowledge
base derived from the requirements phase of the software
lifecycle. In addition, the grammatical approach introduces
well-defined semantics among the components being com-
posed. The semantics assist in precisely and efficiently eval-
uating the individual component QoS, as well as system-
wide QoS in a programmable fashion. The result is to facil-
itate straightforward and manageable component composi-
tion analyses from the perspective of QoS requirements.

1 Introduction

Distributed Real-Time and Embedded (DRE) software
systems are becoming increasingly complex. Such com-
plexity can only be managed by Component-Based Soft-
ware Engineering (CBSE), that is, building such systems
from a collection of standardized and customized compo-
nents. The integration of such components into a software
system is the major effort in constructing such systems. An-
other dimension of such systems is the notion of Quality
of Service (QoS), which transcends functional properties
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to include non-functional properties such as real-time and
security issues. When DRE systems are constructed, QoS
plays a critical role in determining the quality of the sys-
tem. Along with functional specifications and models of
the components, QoS attributes must also be specified and
validated. The vision of the UniFrame project [9] is the de-
velopment of techniques and tools that will enable software
engineers to construct a DRE system by locating software
components scattered about an organization or from third
parties, evaluating the compatibility of heterogeneous com-
ponents, generating connectors for the dissimilar pieces and
validating a system composed from them.

This paper presents a grammatical QoS-driven approach
to solve the challenges of black box component compo-
sition based on QoS. This approach expresses the system
requirements in terms of QoS parameters and manipulates
the QoS requirements using grammar rules which assure the
correctness of the composition with respect to QoS and pre-
conditions and post-conditions of each composition. This
verification assists in eliminating the infeasible alternatives
for any pre-condition or post-condition that does not satisfy
the corresponding QoS constraints (i.e., facts) stored in the
knowledge base. The knowledge base consists of specific
composition rules for inferring the applicability of compo-
nent composition. If all conditions are verified, the compo-
sition is assured. The systematic optimal solution of all QoS
parameters can be evaluated by defining a specific QoS util-
ity function of various QoS parameters. The specification
of QoS requirements using grammar and rules facilitates
the straightforward and manageable component composi-
tion analyses from the perspective of QoS parameters.

The paper is organized as follows: the next section pro-
vides background; section 3 proposes the concepts and an
example; section 4 concludes the paper.

2 Background

The evolution of new techniques for software develop-
ment is driven by the requirements of scalability within
the growing complexity and size of modern software. To
avoid developing scalable complex systems from scratch,
CBSE enables the composition of commercial off-the-shelf
(COTS) components, thereby benefitting software develop-
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ment by reusing and replacing components as needed. Soft-
ware product lines [4] enrich the merits of CBSE by ana-
lyzing and constructing a set of software systems that share
commonality and variability under specific considerations.
The integration of CBSE and software product lines expe-
dites the pace of software development, and proliferates the
productivity of software products. The integration poses the
following challenges for QoS-sensitive systems:

The Component Perspective Problem
Functional requirements define the functionality that sys-
tems should perform, and non-functional requirements
specify constraints on system resources. Most systematic
requirements analyses are component-driven [8], i.e., the
analyses are based on the perspective of components and
their functional requirements rather than non-functional re-
quirements. The primary insufficiency of the component-
driven analyses for QoS-sensitive system is that non-
functional requirements are often tangled with functional
ones. As numerous QoS characteristics require evaluation,
separation of requirements concerns assists in manageably
evaluating functional and non-functional requirements.

The Abundant Alternatives Problem
Hundreds of alternatives are generated based on the require-
ments of different composition decisions and permutations
of selected components. The evaluation and management
of abundant alternatives result in intensive workloads in the
requirements phase.

The Composition Semantics Problem
Because component-driven analyses concentrate on the
component units, the correlative composition semantics are
not rich enough to state the composition influences on the
QoS parameters. For example, the description of degrada-
tion and upgrade of certain QoS parameters is difficult by
the component-driven composition semantics. Therefore,
the evaluation of QoS parameters may not be performed in
isolation, especially for some QoS parameters which mutu-
ally influence one another.

3 A Grammatical QoS-Driven Approach

Two-Level Grammar++ (TLG++) [3] is an object-
oriented formal specification language, which consists of
two Context-Free Grammars (CFGs) defining the set of pa-
rameters and the set of function definitions over the parame-
ters, respectively. Originally, TLG++ was used for defin-
ing the syntax and semantics of programming languages:
the first level consists of the production rules of the syn-
tax and the second level interprets the semantics of these
rules. TLG++ has been used for both specification of rules
for component assembly [2] and for composing features to
describe the characteristics of components [10]. In addition,
TLG++ code can be automatically converted into Java us-
ing T-Clipse [7], an Integrated Development Environment

for TLG++. In our approach, every QoS parameter is repre-
sented by a class of TLG++: the first CFG shows the com-
ponents of alternatives and the necessary parameters used
for the function definitions. The second CFG describes the
function definitions, which include the reasoning operations
and computational operations (i.e., composition semantics)
regarding QoS parameters. The reasoning operations are
used for analyzing and verifying pre-conditions and post-
conditions of each composition. For the pre-conditions, pre-
liminary queries verify that the components own the appro-
priate functions operating the QoS. Analytic queries then re-
quest the QoS information of specific components. For the
post-conditions, the conclusive queries send back the com-
posed“pattern” (i.e., the selected components and the QoS
dataflow among these components) to avoid any conflict
with respect to the constraints; namely, verification of post-
conditions. If preliminary, analytic or conclusive queries
return false, the alternative is infeasible and discarded.

We use Jess [5] as the underlying rule inference engine
for reasoning about alternatives’ feasibility regarding QoS
requirements. Jess is a forward and backward chaining rule
engine for the Java platform, which bridges Java and the
rule-based language. Jess includes a Java library for defin-
ing rules, facts and queries, and for invoking the rule en-
gine. The knowledge base accumulates the facts and rules
regarding the components and QoS parameters. Queries re-
quest answers inferred from the facts and rules stored in the
knowledge base. The querying results obtained from the
rule engine are converted into interpretable Java objects for
further processing tasks written in Java.

The primary concepts and motivations of applying
TLG++ to a QoS requirements analyses approach in the
context of CBSE and software product lines assume the fol-
lowing: (a) the components, having functions computing a
QoS parameter, are like the operands of an expression; (b)
composition semantics are treated as the operator of two
(sets of) components; (c) production rules5 are the counter-
parts of composition decisions, which imply the dataflow
of the QoS parameters among components. Constructing
a system is actually the same as defining a programming
language with syntax and semantics. Under such a con-
cept, Extended Backus-Naur Form (EBNF) [1] can repre-
sent mandatory, alternative (i.e., one of), optional and“OR”
(i.e., more of) features of components involved in a soft-
ware product line, as in Feature-Oriented Domain Analysis
[6]. The syntax trees generated by applying different sets of
production rules can be treated as the counterparts of the al-
ternatives of a software product line. TLG++, consisting of
two tightly coupled CFGs, is appropriate for the grammati-
cal QoS-driven approach to define customized and compre-
hensive semantics for component composition.

5Production rules may have ambiguity, left recursion and left factoring
problems. Analyzers should avoid these grammatical problems.



Figure 1 shows the procedures for analyzing systematic
QoS requirements. First, analyzers write all QoS parameter
classes in TLG++, which define the involved components
and the composition semantics among the components re-
garding the QoS parameter. T-Clipse transforms TLG++
into Java. Second, the strict QoS parameters are evalu-
ated, because they are the strict feasibility criteria for the
alternatives. Third, all orthogonal QoS parameters are in-
dividually evaluated, and every set of non-orthogonal QoS
is collectively estimated. Orthogonal QoS parameters im-
ply that adaptation will not influence other QoS parameters,
yet non-orthogonal QoS parameters substantially influence
other QoS parameters. After all sets of non-orthogonal QoS
are assured, the cumulative goals, the final selection criteria
of alternatives, can be computed by a user-defined algebraic
function over all assured QoS parameters. All of the fulfill-
ing patterns of the software product lines will be stored in
the knowledge base for the future queries. In the situations
that strict, orthogonal or non-orthogonal QoS are not satis-
fied, a new (set of) component(s) will be selected as a new
alternative to be evaluated.

NO

NO

NO

NO

Query QoS information
of new component(s)

Evaluate All Orthogonal QoS Parameters

Evaluate All Sets of Non-orthogonal QoS
Parameters

Evaluate Cumulative Goals of the
Alternatives

YES

Write TLG classes for QoS Parameters
and convert them into Java by T-Clipse

The Jess
Rule

Engine
and the

Knowledge
Base

Evaluate All Strict QoS Parameters

YES

YES

YES

Save the assured pattern back as a new fact

Figure 1. The procedures of the approach.

Figure 2 shows the user-defined grammars for each QoS
parameter: the Ci are the terminals that represent compo-
nents, and Dj , Ek, and Fl are nonterminals that describe the
composition decision and the QoS dataflow. The left box,
the middle box, and the right box, are the grammars for
Security, Signal, anda set of non-orthogonal QoS (Time,
CPU Usage,and Battery Life), respectively. Please note
that some production rules have left factoring, which may
be eliminated as described in [1].

 1  Security � C1 C2 D1 
2  D1 � C3 D2 | C4 D3 
3  D2 � C4 C5 | C5 C6 
4  D3 � C5 D4 | C5 C7 
5  D4 � C3 C7 

1  Signal � C1 C2 E1 
2  E1 � C3 E2 | C4 E3 
              | C5 E4 
3  E2 � C6 C7 
4  E3 � C3 C5 E5 | C3 C6 
5  E4 � C4 C6 C7 
6  E5 � C7 

1  CPU � C1 F1 | C2 F2 
2  F1 � C2 C4 F3 | C3 C4 F4                      
3  F2 � C5 C6 F5 | C5 | C6 F6 
4  F3 � C7 C6 
5  F4 � C2 C5 
6  F5 � C3 C7 
7  F6 � C1 C4 

Figure 2. Grammars for QoS parameters

The cascading scenario is introduced to evaluate orthog-
onal QoS parameters. A set of components is chosen as the

starting point of a QoS dataflow. The consequent compo-
nents are opted by specific decisions such asAND andOR.
AND means the dataflow streams into a set of components,
andOR implies the new alternatives of the software prod-
uct line are generated. As a QoS dataflow requires a new
composition decision, a new TLG++ class is written: the
parameters include the new components being selected, and
the functions define the composition semantics between its
ascendant and itself with respect to the QoS dataflow.

The upper box of Figure 3 represents the TLG++ class
for the first production rule in Figure 2, the starting point
of the SecurityQoS dataflow. In the upper box, line 2
comprises the first CFG that defines the selected compo-
nents for the second CFG. Lines 3 to 29 comprise the sec-
ond CFG that describes the semantics for composition, in-
cluding computational and reasoning operations. Lines 3
and 4 verify the pre-conditions of Components Comp1 and
Comp2. In “queryComponent” (lines 12 to 27), the func-
tions of the Java API for the Jess rule engine (e.g., exe-
cuteCommand) are invoked. Lines 13 to 15 define the query
for searching the facts of QoS parameters. Lines 18 to 21
define where the querying results should be stored. Lines
23 to 25 comprise the semantics that define how to fetch the
elements of the facts of the QoS parameter. After verify-
ing the pre-conditions, lines 5 to 6 compute the QoS value
based on the composition semantics defined in line 28. Fi-
nally, line 9 verifies the post-condition of the composition
by checking if the composed QoS value is out of range. The
lower box of Figure 3 is the Security2 class for compos-
ing Security1 using the second production rule based on
the cascading scenario. In the lower box, the semicolon
in line 2 means there are optional components for the soft-
ware product line (i.e., the counterpart of“|” in the EBNF).
Therefore, this box contains two composition semantics for
components Comp3 and Comp4, respectively.Signal is
defined in the similar way using its grammar in Figure 2.

For non-orthogonal QoS analyses, it is difficult to find
the optimal balance when one non-orthogonal QoS para-
meter increases and the other one decreases. The coarse-
grained scenario extends the cascading scenario for non-
orthogonal analyses. All sets of non-orthogonal QoS pa-
rameters are written in TLG++ classes using the cascading
scenario. A TLG++ class defines a weighted algebra func-
tion over each set of non-orthogonal QoS parameters (in this
paper,Time, CPU Usage,andBattery Life) to discover the
maximum value. Figure 4 shows the decision trees of five
QoS parameters, expressing every composition decision as
a branch of the tree. If any component in a QoS dataflow vi-
olates strict QoS (i.e., gray nodes), the following nodes (i.e.,
stripe nodes) are eliminated. The cumulative goal is com-
puted by a user-defined algebraic function over all feasible
goals of QoS parameters.



 class Security_1 implements Serializable 
2   Product_Line ::  Comp_1 Comp_2. // All other parameter declarations ignored 
3   Query_1 := semantics of queryComponent with Comp_1;//verify pre-cond. of Comp_1  
4   Query_2 := semantics of queryComponent with Comp_2;//verify pre-cond. of Comp_2 
5   Query_3 := if  Query_1 &&  Query_2, then semantics of minimum with  
6     Comp_1 and Comp_2, else False, end if; 
7    //if both Query_1 and Query_2 are true, compute the composition semantics of   
8    //Comp_1 and Comp_2. Otherwise, stop analyzing the alternative 
9   Query_4 := semantics of queryPattern with QoSValue;//verifies post-cond. check range 
10  if  Query_4, then MyRete semantics of UpdatePattern, else “False”, end if. 
11  //if Query_4 is true, the composed pattern is assured. Update the pattern to KB 
12  semantics of queryComponent with Component : 
13    MyRete semantics of executeCommand with “(defquery QoSSearch (declare     
14    (variables ?comp)) (qos (mycomponent ?comp) (myfunc ?func) (qoslow ?low)   
15       (qosup ?up)))”;  
16     //define the Jess query for the QoS parameter, which has the fields of components,  
17     //functions, lower bound and upper bound. 
18     ValueVector_1 := ValueVector semantics of addAll withValue_1; 
19     //Store the fields into ValueVector, an API provided by Jess’ Java library 
20     MyRete semantics of store with “RESULT” and MyRete semantics of RunQuery     
21       with “QoSSearch” and ValueVector_1; 
22     //Store the result of the query into the RESULT variable 
23     MyRete semantics of executeCommand with “(run-query QoSSearch "+  
24       component+”)””;  //Run the query component is the variable of the query 
25     Iterator_1 := MyRete semantics of fetch with “RESULT”;//RESULT saved to Iterator  
26     if  Iterator_1 != null, then return TRUE, else return FALSE, end if. 
27     //if the first field has no component defined, the pre-condition is not verified 
28  semantics of minimum with Component1 and Component2 ://…ignored 
29  //semantics of queryPattern, and UpdatePattern are ignored. 
end class 

class Security_2 implements Serializable. // All other parameter declarations ignored 
2  Product_Line ::  Comp_3 ; Comp_4.  //Comp_3 OR Comp_4 as alternatives 
3  semantics of ProductLine_1 with Component1 : //semantics for Comp_3 OR Comp_4 
4     Query_1 := semantics of queryComponent with Component1;//verify pre-cond. 
5     //queryComponent has same semantics in Figure 3 
6     if  Query_1, then semantics of addition with Security_1 and Component1,  
7     else False, end if; 
8     Query_2 := Rete semantics of queryPattern with QoSValue; 
9      if  Query_2, then Rete semantics of UpdateFact, Rete semantics of UpdatePattern, else  
10    “Composition False”, end if. //verify the post-condition  
11  semantics of addition with Component1 and Component2 : //…ignored 
12  //semantics of queryPattern, UpDateFact and UpdatePattern are ignored here. 
end class     

Figure 3. Security 1 and Security 2 in TLG++

4 Conclusions
The grammatical QoS-driven approach defines the syn-

tax of software product lines, and the semantics of the com-
ponent composition from the QoS parameter perspective.
The approach eases the burden of management and evalu-
ation of QoS that the component-driven approaches suffer
from. It also achieves three goals: reducing the infeasi-
ble alternatives, assuring the feasible ones, and manageably
evaluating orthogonal QoS and mutually-influenced QoS.
Finally, a stand-alone inference engine separates the infer-
ence concern for component composition.
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